To3nano Outreach

Spreading innovation

Protagonisti Scuola secondaria di II grado, Dottorandi, Ricercatori, Insegnanti Tipologia di progetto Evento, Laboratori Partecipanti 36 studenti

Altre Edizioni

I laboratori di nanoscienze dei migliori centri di ricerca del Piemonte aperti agli studenti delle scuole secondarie di II grado.

Agorà Scienza, insieme ai Centri di ricerca Chilab (Politecnico di Torino), NIS (Università di Torino) e INRIM (istituto Nazionale di Ricerca Metrologica) e con il supporto di Compagnia di San Paolo, propone per il secondo anno il progetto To3-nano Outreach.

Lo scopo è quello di diffondere nelle scuole l'innovazione sostenibile che le Nanoscienze e Nanotecnologie offrono al territorio piemontese attraverso uno stage pomeridiano di cinque giorni a partire dal mese di ottobre 2015 presso uno dei tre Centri di ricerca coinvolti.

I destinatari dell’iniziativa sono in particolare studenti delle classi IV e V degli Istituti d’Istruzione secondaria di II grado di Torino e Provincia e i loro insegnanti.

FORMAT

I partecipanti sono coinvolti in attività di ricerca sperimentale che portano per esempio alla costruzione di un oggetto tecnologico da presentare successivamente in classe ai propri compagni. Questi interventi di peer education permettono di responsabilizzare i ragazzi e raggiungere un numero significativo di giovani.

Inoltre gli studenti possono scegliere di essere protagonisti di azioni di comunicazione verso un gruppo allargato di studenti in occasione del Nanoday 2016, una giornata di informazione su nanoscienze e nanotecnologie, che si svolgerà martedì 15 marzo 2016 presso il Centro Congressi dell’Unione Industriale di Torino.

Infine, l’esperienza può essere oggetto di approfondimento, con l’aiuto dei responsabili dei laboratori, per l’elaborato finale da presentare all’esame di maturità.

COME PARTECIPARE

I posti disponibili sono circa 40 e i partecipanti selezionati saranno suddivisi in 6 gruppi cercando di rispettare le preferenze espresse per i laboratori.

  • Gli insegnanti sono invitati a segnalare al Centro Agorà Scienza gli studenti motivati a partecipare: 2 studenti per Istituto, preferibilmente di classi diverse. Si incoraggia la partecipazione delle ragazze: il contributo delle donne alla scienza è in continua crescita, ma la partita è aperta e va giocata fin da giovanissime.
  • Le segnalazioni dovranno essere effettuate compilando l’apposito form on-line entro il 10 ottobre 2015. NB: nel caso del laboratorio presso il Chilab - Politecnico di Torino, gli studenti devono essere accompagnati da un insegnante per ogni istituto, mentre negli altri casi la partecipazione degli insegnanti è facoltativa.
  • Gli studenti saranno accolti, fino all’esaurimento dei posti disponibili, seguendo l’ordine di arrivo delle segnalazioni da parte degli insegnanti. ATTENZIONE: Il numero di posti a disposizione è stato raggiunto. Fino al 10 ottobre è possibile iscriversi alla lista di attesa, a cui attingeremo nel caso di defezione dei primi iscritti.
  • Al momento della segnalazione sul form è possibile esprimere fino a 3 preferenze tra i laboratori disponibili. I due studenti segnalati da ciascun istituto dovranno frequentare uno stesso laboratorio per facilitare le azioni di peer education nella scuola successive ai laboratori.

  • Calendario Laboratori

    Laboratorio 1 presso Chilab, Politecnico di Torino

    1. Mercoledì 11 novembre: al Politecnico, C.so Duca Abruzzi: introduzione sulla Nanotecnologie, visita al lab FESEM
    2. Giovedì 19 novembre: visita al laboratorio ChiLab a Chivasso (con partenza dal Politecnico, se necessario)
    3. Giovedì 3 dicembre: al Politecnico, spiegazione e distribuzione dei Nanokit, organizzazione esperienze da fare nelle scuole
    4. Gennaio-febbraio 2016: un incontro a nelle scuole, nelle quali uno dei nostri ricercatori discuterà con gli studenti delle esperienze svolte e farà misure con l'AFM portatile.


    Indirizzo: Politecnico di Torino, C.so Duca Abruzzi

    Come arrivare: http://areeweb.polito.it/ricerca/micronanotech/main-page/about-us


    Laboratorio 2 presso NIS@unito

    1. giovedì 5 novembre
    2. venerdì 6 novembre
    3. giovedì 12 novembre - nuova data!
    4. venerdì 13 novembre
    5. venerdì 20 novembre


    Indirizzo: Dipartimento di Fisica dell’Università di Torino, Via Giuria, 1, 10125 Torino

    Come arrivare: http://www.df.unito.it/do/home.pl/View?doc=home_localizzazione.html


    Laboratorio 3 presso NIS@unito

    1. martedì 27 Ottobre
    2. martedì 3 Novembre
    3. martedì 10 Novembre
    4. martedì 17 Novembre
    5. martedì 24 novembre


    Indirizzo: Via Quarello 11/A, 10135 Torino

    Come arrivare: http://www.nis.unito.it/index.html


    Laboratorio 4 presso NIS@unito

    1. martedì 27 Ottobre
    2. martedì 3 Novembre
    3. martedì 10 Novembre
    4. martedì 17 Novembre
    5. martedì 24 novembre

    Indirizzo: Via Quarello 11/A, 10135 Torino

    Come arrivare: http://www.nis.unito.it/index.html


    Laboratorio 5 presso INRIM

    1. lunedì 26 ottobre
    2. mercoledì 28 ottobre
    3. venerdì 30 ottobre
    4. giovedì 05 novembre
    5. mercoledì 11 novembre

    Indirizzo: Strada delle Cacce 91 
10135 Torino

    Come arrivare: http://www.inrim.it/gen/directions_i.shtml


    Laboratorio 6 presso INRIM

    1. Martedì 3 novembre
    2. Giovedì 5 novembre
    3. Martedì 10 novembre
    4. Giovedì 12 novembre
    5. Martedì 17 novembre


    Indirizzo: Strada delle Cacce 91 
10135 Torino

    Come arrivare: http://www.inrim.it/gen/directions_i.shtml


  • Laboratori

    • LAB 1 - I fondamenti delle nanoscienze

      Ricercatore responsabile: Elena Tresso

      CHILAB - POLITECNICO DI TORINO

      SCOPO: Introdurre gli insegnanti e studenti delle scuole superiori alle nanoscienze, mostrando in particolare le nuove proprietà fisiche che si manifestano alla nanoscala e illustrando alcune delle principali applicazioni innovative, che spaziano dalla meccanica, al fotovoltaico, alle telecomunicazioni e alla medicina.

      Le nanoscienze offriranno agli insegnanti delle scuole superiori l’opportunità di introdurre le leggi fondamentali della natura e la moderna fisica della materia nel laboratorio scolastico.

      I kit didattici verranno scelti in modo da garantire protocolli sperimentali semplici, sicuri e facilmente replicabili, in un approccio didattico sperimentale ed interdisciplinare.

      Si prevedono esperimenti di laboratorio che consentano una reale manipolazione di nano-materiali, permettendo di studiare le principali tematiche legate alle nanotecnologie, quali ad esempio:

      SUPERFICI NANOSTRUTTURATE E NANOTRIBOLOGIA: esperimenti sull'effetto loto, superfici idrofobiche sul legno, minerali e tessuti, formazione di una superficie idrofilica - anti-condensa su vetro;

      MATERIALI INTELLIGENTI (“smart materials”): materiali a memoria di forma, aerogel, piezoelettrici

      NANOPARTICELLE: proprietà ottiche, interazione luce-materia e spettroscopia ottica, nanoparticelle metalliche in soluzione

      VEDERE LA NANOSCALA: microscopia a forza atomica su superfici di grafite e su pattern nanostrutturati.

      L’interesse di questo tipo di laboratorio risiede nella proposta di attività facilmente replicabili in classe senza l’intervento di ricercatori specializzati nelle nanoscienze. Le scuole resteranno detentrici del nanokit e potranno continuare ad utilizzarlo nel tempo sostituendone solo gli elementi consumabili.

      Interventi di ricercatori del Politecnico di Torino saranno comunque programmati nelle classi degli studenti partecipanti e saranno dedicati a specifici argomenti di approfondimento legati alla ricerca realizzata presso l’Ateneo.



    • LAB 2 - Dai diamanti ai superconduttori

      Ricercatore responsabile: Paolo Olivero

      NIS - UNIVERSITÀ DI TORINO

      SCOPO: 1) Familiarizzare con 2 materiali dalle proprietà elettroniche opposte ed ugualmente “estreme”: il diamante (un isolante elettrico ideale, caratterizzato da una resistenza elettrica elevatissima) ed i superconduttori ad alta temperatura critica come l'YBCO (conduttori a resistenza elettrica praticamente nulla). 2) Seguire i processi di fabbricazione e caratterizzazione di micro- e nano-dispositivi basati su questi materiali, che basano le loro peculiari funzionalità su queste proprietà.

      Il diamante, con il suo valore di gap energetica proibita di 5.5 eV (elettron-volt), è un materiale caratterizzato, oltre che da ben note proprietà di durezza meccanica e trasparenza ottica che lo rendono una pietra preziosa di grande fascino, da un’altissima resistività elettrica (superiore a 1 TΩ m, ovvero1012 = 1,000,000,000,000 ohm-metro).

      All’opposto, i materiali superconduttori sono caratterizzati da una resistenza elettrica virtualmente nulla, ovvero consentono la trasmissione di una corrente elettrica senza alcuna dissipazione. A partire dagli inizi del ‘900, si è scoperto che numerosi metalli esibiscono questo tipo di proprietà a bassissime temperature. In particolare, l’YBCO (un’abbreviazione per YBa2Cu3O7, ovvero l’ossido di ittrio bario e rame) ha una temperature critica di circa -180 °C, e quindi transisce ad uno stato super-conduttivo alla temperatura dell’azoto liquido (-177 °C).

      In questo laboratorio gli studenti familiarizzeranno con la caratterizzazione strutturale ed elettrica di campioni di diamante artificiale monocristallino e nano-cristallino di diverse tipologie e qualità cristallografica, e di campioni microscopici di YBCO sintetizzati presso l’Università di Torino. In particolare verranno utilizzate tecniche di miscroscopia a fascio elettronico per risolvere le morfologie di campioni micro- e nano-strutturati, mentre la spettroscopia a foto-elettroni da raggi X (XPS: X-ray Photo-electron Spectroscopy) verrà impiegata per studiarne le composizioni elementari. In seguito, si procederà alla contattatura di micro- e nano-dispositivi basati su questi materiali, e quindi alla loro caratterizzazione elettrica mediante apparati strumentali utilizzati in ambito di ricerca presso il Laboratorio di Fisica dello Stato Solido del Dipartimento di Fisica dell’Università di Torino.



    • LAB 3 - Il segreto del Blu Maya

      Ricercatore responsabile: Roberto Giustetto

      NIS - UNIVERSITÀ DI TORINO

      Che ci crediate o meno, il colore è un’illusione. Anzi, è la percezione, da parte del nostro sistema nervoso, dell’assorbimento selettivo di determinate lunghezze d’onda della luce visibile. Eppure la natura stessa è foriera di un’infinità di colori, che talvolta permangono immutati (pensiamo al blu del cielo) e altre volte soggetti a variazioni, per esempio stagionali (il verde o giallo delle foglie in primavera e autunno).

      L’uomo è da sempre stato affascinato dal colore e fin dagli albori del suo sviluppo tecnologico ha cercato di “replicarlo”, in un cammino che lo ha portato dalle primitive pitture rupestri fino alle sgargianti sfumature cromatiche dei capi d’abbigliamento d’alta moda. La tintura è quel processo che permette di dare colore mediante un bagno liquido in cui sono disciolti i coloranti, sostanze in grado di colorare determinati substrati. Come spesso succede, però, non sempre i risultati sono all’altezza delle aspettative: spesso le “colorazioni artificiali” non sono efficaci quanto quelle naturali e le tinte applicate tendono nel tempo a sbiadire, assumendo tonalità smorte spesso indesiderate.

      L’indaco è un colorante blu molto comune, utilizzato nell’Estremo Oriente fin da tempi molto antichi ed estratto da piante del genere Indigofera. Esso non è solubile in acqua, ma può diventarlo per riduzione in ambiente alcalino, favorita dall’azione di alcuni microrganismi. In questa forma, può penetrare in profondità nelle fibre tessili e garantirne, una volta ri-ossidato, un’efficace colorazione: è questo il procedimento su cui si basa la tintura dei blue-jeans. Al pari di altri coloranti, l’indaco non gode di gran stabilità: se attaccato con acidi si degrada rapidamente formando un composto aranciato, l’isatina. La fissazione su fibre tessili non incrementa la sua resistenza: versando sui blue-jeans poche gocce di acido muriatico o varechina, questi subito sbiadiscono perdendo il colore.

      Mescolando però l’indaco con particolari minerali argillosi e scaldando moderatamente (150-190°C) si ottiene un particolare composto blu il cui colore non viene più intaccato da un qualsiasi aggressivo chimico (acido, base o solvente). È questo il segreto del Blu Maya, un pigmento utilizzato dagli antichi Maya nell’America precolombiana e caratterizzato da un’eccezionale stabilità. Palygorskite e sepiolite sono minerali argillosi microporosi, la cui struttura cristallina è permeata da piccolissimi canali (larghi frazioni di nanometri) riempiti da molecole d’acqua. Una volta scaldati, l’acqua evapora permettendo l’ingresso e la diffusione delle molecole di indaco, che vengono “incorporate” nei canali con formazione di specifici legami chimici. L’incapsulamento e l’ancoraggio nella struttura del minerale isola a tutti gli effetti l’indaco dall’ambiente esterno, vanificando ogni attacco chimico e stabilizzando il nano-composito ibrido (Blu Maya).

      Attualmente, nuovi studi cercano di “replicare” il successo del Blu Maya per ottenere altri pigmenti con ugual stabilità e colori diversi.

      Durante la dimostrazione in classe, i ricercatori coinvolti daranno prova dell’effettiva labilità dell’indaco come colorante isolato ovvero fissato su fibre tessili (blue-jeans). Guideranno, quindi, la classe nella materiale sintesi del nano-composito ibrido (blu maya), miscelando nelle opportune proporzioni e scaldando l’indaco con la palygorskite. Seguirà riprova dell’intervenuta stabilità chimica del colorante incorporato nei micro-canali del minerale argilloso, da effettuarsi mediante attacchi con acidi, basi e solventi. Gli stessi ricercatori supervisioneranno la successiva riproduzione dell'esperimento fornendo, in ogni occasione, opportuni riferimenti didattici e inquadrando l'esperimento nel contesto delle nanotecnologie.



    • LAB 4 - Il test del Luminol

      Ricercatore responsabile: Gianmario Martra

      NIS - UNIVERSITÀ DI TORINO

      Chi non è rimasto affascinato dalla danza luminosa delle lucciole in volo sopra un prato in una sera d’estate, o meravigliato dalle immagini del chiarore emesso da alcuni pesci o altri organismi viventi che popolano le profondità degli abissi oceanici? E chi, a motivo di notizie di cronache o delle varie serie televisive dedicate a investigazioni poliziesche, non ha sentito parlare di un “test del Luminol” per l’individuazione di tracce non altrimenti visibili, in particolare di sangue, sulla scena del crimine? E cosa hanno in comune il lucore quasi poetico di una lucciola con un fenomeno utilizzato per accertare eventi purtroppo cruenti? Partiamo da quest’ultimo punto: nel corso di una reazione chimica, le specie che si formano inizialmente dopo l’incontro tra i reagenti devono accumulare una certa energia per poi dare origine alla formazione dei prodotti, e in alcuni casi almeno una parte di tale energia può rimanere “in dote” ad uno dei prodotti (che in termini scientifici viene a trovarsi in uno stato elettronico eccitato), per poi venire rilasciata appunto sotto forma di fotoni (e quindi di luce).

      È il fenomeno della chemiluminescenza, a cui, quando si manifesta come conseguenza di reazioni che avvengono in organismi viventi, si assegna la denominazione di bioluminescenza. Un aspetto comune alle varie fenomenologie di chemi/bio luminescenza è la presenza di un catalizzatore, che velocizza lo svolgimento della reazione. Tra questi catalizzatori si collocano anche gli ioni ferro presenti nell’emoglobina: è quindi questa l’origine del “test del Luminol” per la ricerca di tracce ematiche latenti (non visibili) sulla scena del reato, in cui le sulle superfici oggetto di indagine viene nebubilizzata una soluzione basica contenente un ossidante ed il Luminol, che in presenza del catalizzatore derivante dall’emoglobina danno corso ad una reazione chemiluminescente, con emissione di una caratterista luce azzurra.

      Tuttavia, come si verificherà nella prima parte dell’esperimento, normalmente la reazione si esaurisce nel corso di alcuni secondi, e l’intensità del fenomeno risulta difficilmente percepibile in presenza di tracce davvero esigue di sangue. Entrambi questi aspetti costituiscono una significativa limitazione all’utilizzo del test nel corso dei rilievi scientifici sulla scena del reato, ed inoltre il repentino spegnimento della chemiluminescenza impedisce quasi sempre l’acquisizione di una adeguata documentazione fotografica, elemento di oggettivazione dei rilievi eseguiti sempre più richiesto per la valutazione delle prove nel corso dei dibattimenti giudiziari. A questo riguardo, studi svolti da alcuni ricercatori dell’Università di Torino, in relazione ad attività scientifiche connesse con il corso di Laurea Magistrale in Chimica Clinica, Forense e dello Sport, hanno portato alla determinazione di una nuova formulazione e sequenza operativa per l’esecuzione del test del Luminol, in cui l’impiego di nanoparticelle permette di prolungare fino a parecchi minuti la durata della reazione chemiluminescente, con un più efficiente consumo dei reagenti e conseguente aumento della luminosità percepibile. L’insieme di tali studi ha portato al deposito da parte dell’Università di Torino della domanda di brevetto “A method and a kit for determinino human or animal blood on a surface” (WO2010064199-A1), di cui è in corso l’estensione della validità negli USA.

      L’attività proposta prevede una breve introduzione su alcuni aspetti scientifici di base, necessari per svolgere in modo appropriato la successiva serie di prove sperimentali che, attraverso un percorso logico-deduttivo della interpretazione dei risultati via via ottenuti permetterà ai ragazzi coinvolti di formulare ipotesi sul ruolo delle nanoparticelle nel miglioramento delle prestazioni del test del luminol, da confrontare con le spiegazioni proposte dai ricercatori autori della ricerca.



    • LAB 5 - Nanofabbricazione

      Ricercatore responsabile: Luca Boarino

      INRIM - ISTITUTO NAZIONALE DI RICERCA METROLOGICA

      Il Self-Assembly (SA) molecolare e supramolecolare è il fenomeno fondamentale con cui la Natura fabbrica i propri organismi superiori. Questo fenomeno non è ancora compreso pienamente e i primi tentativi in laboratorio di organizzare e fabbricare strutture ordinate partendo da un singolo mattone fondamentale, molecole, macromolecole o sistemi ancora più grandi, non sono che dei goffi tentativi di emulazione di tecniche che la Natura ha sviluppato e ottimizzato in milioni di anni.

      Il fenomeno del SA utilizza singoli componenti, uguali tra loro, per formare strutture ordinate su livelli gerarchici sempre più complessi, grazie alla presenza di condizioni chimico fisiche controllate e ad alcune forze esterne opportunamente applicate. I processi di Self-Assembly sono giunti alla ribalta della ricerca sulle Nanoscienze e Nanotecnologie perchè i processi di miniaturizzazione e integrazione su larga scala, ad esempio della microelettronica, stanno raggiungendo dimensioni prossime a quelle molecolari e le tecnologie basate sull'auto-organizzazione sono una delle poche alternative esistenti e perseguibili per fabbricare dispositivi con caratteristiche dimensionali in questo ordine di scala.

      L'esperimento che verrà condotto in INRiM, presso i laboratori Nanofacility Piemonte, ha l'obbiettivo di mostrare le peculiarità del SA di nanosfere di polistirene e di applicare tale processo alla nanostrutturazione di materiali e superfici, in particolare del silicio, materiale di fondamentale importanza per l’elettronica. Oltre alla scoperta degli elementi di base che regolano il Self-Assembly, gli studenti riceveranno una breve formazione sulle tecniche di microscopia ottica ed elettronica, due degli strumenti fondamentali utilizzati all’interno dei laboratori INRiM per la caratterizzazione dei materiali. Inoltre verranno fornite loro le basi per imparare ad affrontare un problema in modo sistematico e scientificamente consistente.



    • LAB 6 - Quantum Weirdness

      Ricercatore responsabile: Marco Gramegna

      INRIM - ISTITUTO NAZIONALE DI RICERCA METROLOGICA

      La teoria della Meccanica Quantistica sfida continuamente la nostra percezione della realtà e della Natura, descrivendo gli effetti di sistemi microscopici in maniera strana e completamente fuori dall’ordinario. Basti pensare al fatto che Richard P. Feynman, studioso sempre curioso e geniale che diede un contributo fondamentale alla fisica moderna, un giorno disse: “Penso si possa tranquillamente affermare che nessuno capisce la meccanica quantistica. [...] Dal punto di vista del buon senso essa descrive una Natura assurda. Tuttavia è in perfetto accordo con i dati sperimentali. Mi auguro quindi che riusciate ad accettare la Natura per quello che è: assurda.”

      Essendo la nostra esperienza quotidiana legata al mondo macroscopico, potrebbe sembrarci ovvio che le bizzarrie quantistiche si manifestino solo in laboratori sofisticati, ma non è esattamente così.

      Nei laboratori del gruppo di Ottica Quantistica INRiM esploreremo, infatti, in che modo alcuni fenomeni puramente quantistici possano svelarsi anche con semplici attrezzature, analizzando applicazioni sperimentali in cui i protagonisti saranno i fotoni, che ci condurranno in un intrigante viaggio alla scoperta della natura della luce, dell'interferenza (sia dal punto di vista classico che quantistico) e del dualismo onda-particella, svelandoci i loro "trucchi" per passeggiare negli universi paralleli. In particolare realizzeremo un'esperienza nota come l'esperimento del Quantum Eraser (il Cancellino Quantistico) a scelta ritardata, un concetto introdotto tempo fa dal fisico John A. Wheeler e che estende un'idea usata da Niels Bohr e Albert Einstein nelle loro discussioni del 1935 sulla meccanica quantistica e la natura della realtà. Questo effetto mostra una delle più strane caratteristiche della meccanica quantistica: la possibilità di compiere azioni che modificano la nostra interpretazione di quello che è successo in passato, come a dire che in fisica classica l’osservazione del presente consente di ricostruire il passato, in meccanica quantistica è invece il futuro a raccontarlo. I partecipanti al termine delle lezioni saranno in grado di riprodurre questo esperimento ovunque, con semplici attrezzature facilmente reperibili (e veramente economiche), e saranno informati sulla bibliografia essenziale.

      Una volta esplorato sperimentalmente quanto possa essere effettivamente controintuitiva la Natura a livello microscopico, vedremo quali sono le risorse che la meccanica quantistica mette a disposizione della ricerca scientifica attuale, e in particolare l'entanglement, il fenomeno che sta alla base del teletrasporto quantistico e di quella che è l’informazione e la computazione quantistiche, e allo stesso modo della crittografia quantistica, scienze emergenti che costituiscono una delle basi fondamentali della fisica di questo secolo appena agli esordi.



Ti potrebbero interessare anche

Il grande cammino della…

Tre incontri per raccontare il metodo scientifico

Treevial

Sicuri di sapere tutto sulla sostenibilità?

Pionieri

Esploratori dell'ignoto da Leonardo ai giorni nostri

FRidA - Forum della Ricerca di…

Il portale della ricerca e del public engagement dell'Università di…